Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168715, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008330

RESUMEN

Water contamination caused by heavy metals, nutrients, and organic pollutants of varying particle sizes originating from domestic and industrial processes poses a significant global challenge. There is a growing concern, particularly regarding the presence of heavy metals in freshwater sources, as they can be toxic even at low concentrations, posing risks to human health and the environment. Currently, membrane technologies are recognized as effective and practical for treating domestic and industrial wastewater. However, these technologies are hindered by fouling issues. Furthermore, the utilization of conventional membranes leads to the accumulation of non-recyclable synthetic polymers, commonly used in their production, resulting in adverse environmental consequences. In light of our previously published studies on environmentally friendly, biodegradable polylactic acid (PLA) nanocomposite mixed matrix membranes (MMMs), we selected two top-performing PLA-based ultrafiltration nanocomposite membranes: one negatively charged (PLA-M-) and one positively charged (PLA-M+). We integrated these membranes into systems with varying arrangements to control fouling and eliminate heavy metals, organic pollutants, and nutrients from raw municipal wastewater collected by the local wastewater treatment plant in Abu Dhabi (UAE). The performance of two integrated systems (i.e., PLA-M+/PLA-M- and PLA-M-/PLA-M+) was compared in terms of permeate flux, contaminant removal efficiencies, and fouling mitigation. The PLA-M+/PLA-M- system achieved removal efficiencies of 79.6 %, 92.6 %, 88.7 %, 85.2 %, 98.9 %, 94 %, 83.3 %, and 98.3 % for chemical oxygen demand (COD), nitrate (NO3--N), phosphate (PO43--P), ammonium (NH4+-N), iron (Fe), zinc (Zn), nickel (Ni), and copper (Cu), respectively. On the other hand, the PLA-M-/PLA-M+ system recorded removal efficiencies of 85.8 %, 95.9 %, 100 %, 81.9 %, 99.3 %, 91.9 %, 72.9 %, and 98.9 % for COD, NO3--N, PO43--P, NH4+-N, Fe, Zn, Ni, and Cu, respectively. Notably, the PLA-M-/PLA-M+ system demonstrated superior antifouling resistance, making it the preferred integrated system. These findings demonstrate the potential of eco-friendly PLA nanocomposite UF-MMMs as a promising alternative to petroleum-based polymeric membranes for efficient and sustainable wastewater treatment.

2.
Chemosphere ; 349: 140801, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029934

RESUMEN

Wastewater treatment technologies have been developed to address the health and environmental risks associated with toxic and cancer-causing dyes and heavy metals found in industrial waste. The most commonly used method to mitigate and treat such effluents is adsorption, which is favored for its high efficiency, low costs, and ease of operation. However, traditional adsorbents have limitations in terms of regeneration and selectivity compared to smart adsorbents. Smart polymeric adsorbents, on the other hand, can undergo physical and chemical changes in response to external factors like temperature and pH, enabling a selective adsorption process. These adsorbents can be easily regenerated and reused with minimal generation of secondary pollutants during desorption. The unique properties acquired by stimuli-responsive adsorbents have encouraged researchers to investigate their potential for the selective and efficient removal of organic dyes and heavy metals. This comprehensive review focuses on two common stimuli, pH and temperature, discussing the fabrication methods and characteristics of smart adsorbents responsive to these factors. It also provides an overview of the mechanisms, isotherms, kinetics, and thermodynamics of the adsorption process for each type of stimuli-responsive adsorbent. Finally, the review concludes with discussions on future perspectives and considerations.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Temperatura , Adsorción , Termodinámica , Colorantes , Polímeros , Cinética , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
3.
Chemosphere ; 337: 139431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37422217

RESUMEN

Exploration and transportation of oil offshore can result in oil spills that cause a wide range of adverse environmental consequences and destroy aquatic life. Membrane technology outperformed the conventional procedures for oil emulsion separation due to its improved performance, reduced cost, removal capacity, and greater eco-friendly. In this study, a hydrophobic iron oxide-oleylamine (Fe-Ol) nanohybrid was synthesized and incorporated into polyethersulfone (PES) to prepare novel PES/Fe-Ol hydrophobic ultrafiltration (UF) mixed matrix membranes (MMMs). Several characterization techniques were performed to characterize the synthesized nanohybrid and fabricated membranes, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), contact angle, and zeta potential. The membranes' performance was assessed using a surfactant-stabilized (SS) water-in-hexane emulsion as a feed and a dead-end vacuum filtration setup. The incorporation of the nanohybrid enhanced the hydrophobicity, porosity, and thermal stability of the composite membranes. At 1.5 wt% Fe-Ol nanohybrid, the modified PES/Fe-Ol MMM membranes reported high water rejection efficiency of 97.4% and 1020.4 LMH filtrate flux. The re-usability and antifouling properties of the membrane were examined over five filtration cycles, demonstrating its great potential for use in water-in-oil separation.


Asunto(s)
Ultrafiltración , Agua , Ultrafiltración/métodos , Agua/química , Emulsiones , Espectroscopía Infrarroja por Transformada de Fourier , Membranas Artificiales , Interacciones Hidrofóbicas e Hidrofílicas
4.
J Environ Manage ; 317: 115367, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636111

RESUMEN

Two-dimensional (2D) lamellar graphene oxide (GO) membranes are emerging as attractive materials for molecular separation in water treatment because of their single atomic thickness, excellent hydrophilicity, large specific surface areas, and controllable properties. To yet, commercialization of GO laminar membranes has been hindered by their propensity to swell in hydrated conditions. Thus, chemical crosslinking of GO sheets with the polymer matrix is used to improve GO membrane hydration stability. This review focuses on pertinent themes such as how chemical crosslinking improves the hydration stability, separation performance, and antifouling properties of GO membranes.


Asunto(s)
Grafito , Purificación del Agua , Grafito/química , Membranas Artificiales , Polímeros/química , Purificación del Agua/métodos
5.
Sci Total Environ ; 824: 153869, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176376

RESUMEN

Polylactides are a prominent class of biocompatible and biodegradable polymers that can be used to fabricate membranes for wastewater treatment. Excessive nutrient (phosphorus and nitrogen) concentrations in water bodies are a serious concern that has resulted in widespread health problems and potable water shortages. In this study, ultrafiltration (UF) membranes were prepared from polylactic acid (PLA) using the phase inversion method. Scanning electron microscope (SEM), thermogravimetric analyzer (TGA), and Fourier-transform infrared (FTIR) analysis were used to characterize the membranes. The hydrophilicity of the membrane surface was investigated by analyzing the water contact angle (CA). The results showed that the PLA membranes had a finger-like asymmetric morphology and various dense pore sizes. When the concentration of the PLA polymer increased from 15% to 20%, the removal of ammonium­nitrogen (NH4+-N) increased from 41.9 ± 1.3% to 95.9 ± 3.1% and from 50% to 87% for synthetic and raw wastewater samples, respectively. Up to 52% removal rates of phosphates (PO43--P) were achieved using PLA membranes. This study revealed a great opportunity to develop green, efficient, and sustainable PLA membranes for the treatment of wastewater with high nutrient content.


Asunto(s)
Agua Potable , Ultrafiltración , Membranas Artificiales , Nitrógeno , Nutrientes , Poliésteres , Ultrafiltración/métodos , Aguas Residuales
6.
Sci Rep ; 7(1): 7490, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790419

RESUMEN

A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.

7.
ACS Appl Mater Interfaces ; 8(27): 17519-28, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27294568

RESUMEN

Graphene oxide (GO) nanosheets have antibacterial properties that have been exploited as a biocidal agent used on desalination membrane surfaces in recent research. Nonetheless, improved strategies for efficient and stable attachment of GO nanosheets onto the membrane surface are still required for this idea to be commercially viable. To address this challenge, we adopted a novel, single-step surface modification approach using tannic acid cross-linked with polyethylene imine as a versatile platform to immobilize GO nanosheets to the surface of polyamide thin film composite forward osmosis (FO) membranes. An experimental design based on Taguchi's statistical method was applied to optimize the FO processing conditions in terms of water and reverse solute fluxes. Modified membranes were analyzed using water contact angle, adenosine triphosphate bioluminescence, total organic carbon, Fourier transform infrared spectroscopy, ζ potential, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. These results show that membranes were modified with a nanoscale (<10 nm), smooth, hydrophilic coating that, compared to pristine membranes, improved filtration and significantly mitigated biofouling by 33% due to its extraordinary, synergistic antibacterial properties (99.9%).

8.
Bioresour Technol ; 215: 357-370, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27020396

RESUMEN

The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Técnicas Electroquímicas/tendencias , Fuentes Generadoras de Energía , Animales , Catálisis , Comercio/tendencias , Técnicas Electroquímicas/economía , Técnicas Electroquímicas/métodos , Fuentes Generadoras de Energía/economía , Calentamiento Global , Humanos
9.
ACS Appl Mater Interfaces ; 7(32): 18004-16, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26214126

RESUMEN

Graphene oxide (GO) nanosheets were attached to the polyamide selective layer of thin film composite (TFC) forward osmosis (FO) membranes through a poly L-Lysine (PLL) intermediary using either layer-by-layer or hybrid (H) grafting strategies. Fourier transform infrared spectroscopy, zeta potential, and thermogravimetric analysis confirmed the successful attachment of GO/PLL, the surface modification enhancing both the hydrophilicity and smoothness of the membrane's surface demonstrated by water contact angle, atomic force microscopy, and transmission electron microscopy. The biofouling resistance of the FO membranes determined using an adenosine triphosphate bioluminescence test showed a 99% reduction in surviving bacteria for GO/PLL-H modified membranes compared to pristine membrane. This antibiofouling property of the GO/PLL-H modified membrane was reflected in reduced flux decline compared to all other samples when filtering brackish water under biofouling conditions. Further, the high density and tightly bound GO nanosheets using the hybrid modification reduced the reverse solute flux compared to the pristine, which reflects improved membrane selectivity. These results illustrate that the GO/PLL-H modification is a valuable addition to improve the performance of FO TFC membranes.


Asunto(s)
Incrustaciones Biológicas , Grafito/química , Membranas Artificiales , Bacterias/efectos de los fármacos , Microscopía de Fuerza Atómica , Nanoestructuras/química , Nanoestructuras/toxicidad , Óxidos/química , Polilisina/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termogravimetría , Agua/química
10.
Recent Pat Biotechnol ; 7(3): 234-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24308492

RESUMEN

Chitin is an extremely insoluble material with very limited industrial use; however it can be deacetylated to soluble chitosan which has a wide range of applications. The enzymatic deacetylation of various chitin samples was investigated using the bacterial chitin deacetylase (CDA), which was partially purified from Alcaligenes sp. ATCC 55938 growth medium and the kinetic parameters of the enzyme were determined. Also, the efficiency of biocatalyst recycling by immobilization technique was examined. CDA activity reached its maximum (0.419 U/ml) after 18 h of bacterial cultivation. When glycol chitin was used as a substrate, the optimum pH of the enzyme was estimated to be 6 after checking a pH range between 3 and 9, while the optimum temperature was found to be 35°C. Addition of acetate (100 mM) in the assay mixture resulted in 50% loss of enzyme activity. The Km value of the enzyme is 1.6 × 10(-4) µM and Vmax is 24.7 µM/min. The average activity of CDA was 0.38 U/ml for both of immobilized and freely suspended cells after 18 h of bacterial growth. Some related patents are also discussed here.


Asunto(s)
Alcaligenes/metabolismo , Amidohidrolasas/metabolismo , Quitina/química , Quitosano/química , Biodegradación Ambiental , Quitina/análogos & derivados , Medios de Cultivo/química , Marcadores Genéticos , Concentración de Iones de Hidrógeno , Patentes como Asunto , Filogenia , ARN Ribosómico 16S/genética , Temperatura
11.
Bioresour Technol ; 142: 672-82, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23747174

RESUMEN

The efficiency of microbial fuel cells (MFCs) is affected by several factors such as activation overpotentials, ohmic losses and concentration polarization. These factors are handled in micro-sized MFCs using special electrodes with physically or chemically modified surfaces constructed with specified materials. Most of the existing µLscale MFCs show great potential in rapid screening of electrochemically-active microbes and electrode performance; although they generate significantly lower volumetric power density compared with their mL counterparts because of their high internal resistance. This review presents the development of microfluidic MFCs, with summarization of their advantages and challenges, and focuses on the efforts done to minimize the adverse effects of internal resistance (ohmic and non-ohmic) on their performance.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microfluídica , Electrólitos/metabolismo
12.
Biomicrofluidics ; 7(2): 21502, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24404006

RESUMEN

Microbial fermentation process development is pursuing a high production yield. This requires a high throughput screening and optimization of the microbial strains, which is nowadays commonly achieved by applying slow and labor-intensive submerged cultivation in shake flasks or microtiter plates. These methods are also limited towards end-point measurements, low analytical data output, and control over the fermentation process. These drawbacks could be overcome by means of scaled-down microfluidic microbioreactors (µBR) that allow for online control over cultivation data and automation, hence reducing cost and time. This review goes beyond previous work not only by providing a detailed update on the current µBR fabrication techniques but also the operation and control of µBRs is compared to large scale fermentation reactors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...